Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658031

RESUMO

BACKGROUND: Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS: A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS: Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS: These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Morte Celular Imunogênica , Animais , Camundongos , Morte Celular Imunogênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia
2.
Sci Rep ; 11(1): 207, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420238

RESUMO

The long-standing perception of Protein Kinase C (PKC) as a family of oncoproteins has increasingly been challenged by evidence that some PKC isoforms may act as tumor suppressors. To explore the hypothesis that activation, rather than inhibition, of these isoforms is critical for anticancer activity, we isolated and characterized a family of 16 novel phorboids closely-related to tigilanol tiglate (EBC-46), a PKC-activating epoxytigliane showing promising clinical safety and efficacy for intratumoral treatment of cancers. While alkyl branching features of the C12-ester influenced potency, the 6,7-epoxide structural motif and position was critical to PKC activation in vitro. A subset of the 6,7-epoxytiglianes were efficacious against established tumors in mice; which generally correlated with in vitro activation of PKC. Importantly, epoxytiglianes without evidence of PKC activation showed limited antitumor efficacy. Taken together, these findings provide a strong rationale to reassess the role of PKC isoforms in cancer, and suggest in some situations their activation can be a promising strategy for anticancer drug discovery.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Proteína Quinase C/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
3.
Invest New Drugs ; 37(1): 1-8, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29667135

RESUMO

The five-year survival rate for patients with head and neck squamous cell carcinoma (HNSCC) has remained at ~50% for the past 30 years despite advances in treatment. Tigilanol tiglate (TT, also known as EBC-46) is a novel diterpene ester that induces cell death in HNSCC in vitro and in mouse models, and has recently completed Phase I human clinical trials. The aim of this study was to optimise efficacy of TT treatment by altering different administration parameters. The tongue SCC cell line (SCC-15) was identified as the line with the lowest efficacy to treatment. Subcutaneous xenografts of SCC-15 cells were grown in BALB/c Foxn1nu and NOD/SCID mice and treated with intratumoral injection of 30 µg TT or a vehicle only control (40% propylene glycol (PG)). Greater efficacy of TT treatment was found in the BALB/c Foxn1nu mice compared to NOD/SCID mice. Immunohistochemical analysis indicated a potential role of the host's innate immune system in this difference, specifically neutrophil infiltration. Neither fractionated doses of TT nor the use of a different excipiant led to significantly increased efficacy. This study confirmed that TT in 40% PG given intratumorally as a single bolus dose was the most efficacious treatment for a tongue SCC mouse model.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Diterpenos/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neoplasias da Língua/tratamento farmacológico , Animais , Apoptose , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Língua/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Asian J Surg ; 41(3): 250-256, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28286020

RESUMO

BACKGROUND/OBJECTIVE: Postoperative pancreatic fistula (POPF) remains an important cause of morbidity and mortality after pancreaticoduodenectomy. Pancreaticogastrostomy (PG) as a reconstruction method after pancreaticoduodenectomy is a safe and optional surgical technique in decreasing the risk of POPF. In this study, a retrospective analysis was carried out to evaluate a new modification of PG technique that uses a two-layer anastomoses with an internal stent. METHODS: Forty-seven patients underwent this newly modified PG technique between February 2012 and August 2016. Demographics, histopathological findings, type of surgery performed, perioperative parameters, postoperative length of stay, postoperative complications and interventional procedures, follow-up, and mortality data were collected and analyzed. Clavien-Dindo classification was used to grade the complications' severity. RESULTS: Postoperative mortality was 4.25%, unrelated to POPF, and postoperative morbidity was 44.68%. Thirteen patients had severe (>Grade IIIa) complications, according to Clavien-Dindo classification. As classified in accordance to the International Study Group of Pancreatic Fistula, 24 (51.06%) patients developed Grade A POPF, and no occurrence of Grade B/C POPF was noted. All patients recovered uneventfully with successful treatment interventions. CONCLUSION: The reported PG anastomotic technique is a safe and dependable reconstruction procedure with acceptable morbidity and mortality.


Assuntos
Pâncreas/cirurgia , Fístula Pancreática/prevenção & controle , Pancreaticoduodenectomia , Complicações Pós-Operatórias/prevenção & controle , Stents , Estômago/cirurgia , Adulto , Idoso , Anastomose Cirúrgica/instrumentação , Anastomose Cirúrgica/métodos , Anastomose Cirúrgica/mortalidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fístula Pancreática/epidemiologia , Fístula Pancreática/etiologia , Pancreaticoduodenectomia/mortalidade , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Resultado do Tratamento
5.
Endocrine ; 52(3): 609-17, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26792793

RESUMO

The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.


Assuntos
Processamento Alternativo , Grelina/genética , Sequência de Aminoácidos , Animais , Regulação do Apetite/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sequência Conservada , Grelina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia , Especificidade da Espécie
6.
Mol Cancer Ther ; 14(10): 2321-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26294743

RESUMO

The triple-negative breast cancer (TNBC) subtype represents a cancer that is highly aggressive with poor patient outcome. Current preclinical success has been gained through synthetic lethality, targeting genome instability with PARP inhibition in breast cancer cells that harbor silencing of the homologous recombination (HR) pathway. Histone deacetylase inhibitors (HDACi) are a class of drugs that mediate epigenetic changes in expression of HR pathway genes. Here, we compare the activity of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), the class I/IIa HDAC inhibitor valproic acid (VPA), and the HDAC1/2-specific inhibitor romidepsin (ROMI) for their capability to regulate DNA damage repair gene expression and in sensitizing TNBC to PARPi. We found that two of the HDACis tested, SAHA and ROMI, but not VPA, indeed inhibit HR repair and that RAD51, BARD1, and FANCD2 represent key proteins whose inhibition is required for HDACi-mediated therapy with PARP inhibition in TNBC. We also observed that restoration of BRCA1 function stabilizes the genome compared with mutant BRCA1 that results in enhanced polyploid population after combination treatment with HDACi and PARPi. Furthermore, we found that overexpression of the key HR protein RAD51 represents a mechanism for this resistance, promoting aberrant repair and the enhanced polyploidy observed. These findings highlight the key components of HR in guiding synthetic lethality with PARP inhibition and support the rationale for utilizing the novel combination of HDACi and PARPi against TNBC in the clinical setting.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/genética , Benzimidazóis/farmacologia , Expressão Gênica/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Depsipeptídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Ácidos Hidroxâmicos/farmacologia , Concentração Inibidora 50 , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ácido Valproico/farmacologia , Vorinostat
7.
Oncotarget ; 5(10): 3261-72, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24811120

RESUMO

In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.


Assuntos
Rad51 Recombinase/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Rad51 Recombinase/metabolismo , Análise Serial de Tecidos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA